{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "Covid-19-Data-Exploration.ipynb",
"provenance": [],
"collapsed_sections": [],
"authorship_tag": "ABX9TyODWzVdwiPqT33ss7JyNHvW",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "uvCZpv2VODDd",
"colab_type": "text"
},
"source": [
"Covid-19 Data Exploration"
]
},
{
"cell_type": "code",
"metadata": {
"id": "iZApSQ53eMEj",
"colab_type": "code",
"outputId": "c7569840-8f0f-4597-95eb-fb13e4f9ef83",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"from __future__ import print_function\n",
"\n",
"import pandas as pd\n",
"pd.__version__"
],
"execution_count": 143,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"'0.25.3'"
]
},
"metadata": {
"tags": []
},
"execution_count": 143
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "KEZzJw2-Z7N9",
"colab_type": "text"
},
"source": [
"Since elderly population is a high risk group, we compute the population distribution of people > 60 year old by counties in California.\n",
"\n",
"We also would like to examine how many ICU beds availble by counties in California and determine how many percent of elderly population can afford an ICU bed before they have to start sharing one."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "MA85ovJiW-7A",
"colab_type": "text"
},
"source": [
"To do the study, we found a dataset from California Health and Human Service Open Data Portal which shows the bed types and bed type capacities that are associated with California healthcare facilities that are operational and have a current license issued by the CDPH and/or a current U.S. Department of Health and Human Services’ Centers for Medicare and Medicaid Services (CMS) certification. Data updated: March 10, 2020. You can find the data from below link.\n",
"\n",
"https://data.chhs.ca.gov/dataset/healthcare-facility-bed-types-and-counts/resource/0997fa8e-ef7c-43f2-8b9a-94672935fa60\n",
"\n",
"Disclaimer: Since we do not know the accuray of the data, we assumes no responsibility for errors or omissions. Please use this study as your own risk. AI For Mankind shall not be held liable for any use or misuse of the data. \n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "obgpdY-gCcXu",
"colab_type": "code",
"outputId": "4f95a749-104b-47e4-947b-5755737fa370",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 359
}
},
"source": [
"import pandas as pd\n",
"\n",
"hospital_beds_df = pd.read_csv('https://raw.githubusercontent.com/aiformankind/covid-19-hackathon/master/HEALTH_FAC_BEDS_20200310.csv', skiprows=0, thousands=',')\n",
"hospital_beds_df.head(10)"
],
"execution_count": 144,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"
\n", " | FACID | \n", "FACNAME | \n", "FAC_FDR | \n", "BED_CAPACITY_TYPE | \n", "BED_CAPACITY | \n", "COUNTY_NAME | \n", "
---|---|---|---|---|---|---|
0 | \n", "10000001 | \n", "VINEYARD POST ACUTE | \n", "SKILLED NURSING FACILITY | \n", "SKILLED NURSING | \n", "99 | \n", "SONOMA | \n", "
1 | \n", "10000003 | \n", "CREEKSIDE REHABILITATION & BEHAVIORAL HEALTH | \n", "SKILLED NURSING FACILITY | \n", "SPECIAL TREATMENT PROGRAM | \n", "58 | \n", "SONOMA | \n", "
2 | \n", "10000003 | \n", "CREEKSIDE REHABILITATION & BEHAVIORAL HEALTH | \n", "SKILLED NURSING FACILITY | \n", "SKILLED NURSING | \n", "123 | \n", "SONOMA | \n", "
3 | \n", "10000004 | \n", "CRESCENT CITY SKILLED NURSING | \n", "SKILLED NURSING FACILITY | \n", "SKILLED NURSING | \n", "99 | \n", "DEL NORTE | \n", "
4 | \n", "10000005 | \n", "WINDSOR CARE CENTER OF PETALUMA | \n", "SKILLED NURSING FACILITY | \n", "SKILLED NURSING | \n", "79 | \n", "SONOMA | \n", "
5 | \n", "10000022 | \n", "FRIENDS HOUSE | \n", "SKILLED NURSING FACILITY | \n", "SKILLED NURSING | \n", "34 | \n", "SONOMA | \n", "
6 | \n", "10000024 | \n", "GRANADA REHAB & WELLNESS CENTER, LP | \n", "SKILLED NURSING FACILITY | \n", "SKILLED NURSING | \n", "87 | \n", "HUMBOLDT | \n", "
7 | \n", "10000026 | \n", "APPLE VALLEY POST-ACUTE REHAB | \n", "SKILLED NURSING FACILITY | \n", "SKILLED NURSING | \n", "95 | \n", "SONOMA | \n", "
8 | \n", "10000028 | \n", "EMPRES POST ACUTE REHABILITATION | \n", "SKILLED NURSING FACILITY | \n", "SKILLED NURSING | \n", "98 | \n", "SONOMA | \n", "
9 | \n", "10000029 | \n", "HEALDSBURG SENIOR LIVING COMMUNITY | \n", "SKILLED NURSING FACILITY | \n", "SKILLED NURSING | \n", "38 | \n", "SONOMA | \n", "
\n", " | FACID | \n", "FACNAME | \n", "FAC_FDR | \n", "BED_CAPACITY_TYPE | \n", "BED_CAPACITY | \n", "COUNTY_NAME | \n", "
---|---|---|---|---|---|---|
191 | \n", "30000037 | \n", "METHODIST HOSPITAL OF SACRAMENTO | \n", "GENERAL ACUTE CARE HOSPITAL | \n", "INTENSIVE CARE | \n", "10 | \n", "SACRAMENTO | \n", "
212 | \n", "30000108 | \n", "SUTTER AMADOR HOSPITAL | \n", "GENERAL ACUTE CARE HOSPITAL | \n", "INTENSIVE CARE | \n", "6 | \n", "AMADOR | \n", "
216 | \n", "30000109 | \n", "SUTTER AUBURN FAITH HOSPITAL | \n", "GENERAL ACUTE CARE HOSPITAL | \n", "INTENSIVE CARE | \n", "4 | \n", "PLACER | \n", "
220 | \n", "30000113 | \n", "UNIVERSITY OF CALIFORNIA DAVIS MEDICAL CENTER | \n", "GENERAL ACUTE CARE HOSPITAL | \n", "INTENSIVE CARE | \n", "116 | \n", "SACRAMENTO | \n", "
227 | \n", "30000114 | \n", "BARTON MEMORIAL HOSPITAL | \n", "GENERAL ACUTE CARE HOSPITAL | \n", "INTENSIVE CARE | \n", "8 | \n", "EL DORADO | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
4137 | \n", "930000290 | \n", "KAISER FOUNDATION HOSPITAL - WOODLAND HILLS | \n", "GENERAL ACUTE CARE HOSPITAL | \n", "INTENSIVE CARE | \n", "22 | \n", "LOS ANGELES | \n", "
4198 | \n", "930000912 | \n", "KECK HOSPITAL OF USC | \n", "GENERAL ACUTE CARE HOSPITAL | \n", "INTENSIVE CARE | \n", "84 | \n", "LOS ANGELES | \n", "
4223 | \n", "930001543 | \n", "KAISER FOUNDATION HOSPITAL - BALDWIN PARK | \n", "GENERAL ACUTE CARE HOSPITAL | \n", "INTENSIVE CARE | \n", "12 | \n", "LOS ANGELES | \n", "
4240 | \n", "930001607 | \n", "KINDRED HOSPITAL - SANTA ANA | \n", "GENERAL ACUTE CARE HOSPITAL | \n", "INTENSIVE CARE | \n", "7 | \n", "ORANGE | \n", "
4265 | \n", "930001709 | \n", "MEMORIALCARE MILLER CHILDREN'S & WOMEN'S HOSPI... | \n", "GENERAL ACUTE CARE HOSPITAL | \n", "INTENSIVE CARE | \n", "30 | \n", "LOS ANGELES | \n", "
353 rows Ă— 6 columns
\n", "\n", " | County | \n", "Age | \n", "2010 | \n", "2011 | \n", "2012 | \n", "2013 | \n", "2014 | \n", "2015 | \n", "2016 | \n", "2017 | \n", "2018 | \n", "2019 | \n", "2020 | \n", "2021 | \n", "2022 | \n", "2023 | \n", "2024 | \n", "2025 | \n", "2026 | \n", "2027 | \n", "2028 | \n", "2029 | \n", "2030 | \n", "2031 | \n", "2032 | \n", "2033 | \n", "2034 | \n", "2035 | \n", "2036 | \n", "2037 | \n", "2038 | \n", "2039 | \n", "2040 | \n", "2041 | \n", "2042 | \n", "2043 | \n", "2044 | \n", "2045 | \n", "2046 | \n", "2047 | \n", "... | \n", "Column163 | \n", "Column164 | \n", "Column165 | \n", "Column166 | \n", "Column167 | \n", "Column168 | \n", "Column169 | \n", "Column170 | \n", "Column171 | \n", "Column172 | \n", "Column173 | \n", "Column174 | \n", "Column175 | \n", "Column176 | \n", "Column177 | \n", "Column178 | \n", "Column179 | \n", "Column180 | \n", "Column181 | \n", "Column182 | \n", "Column183 | \n", "Column184 | \n", "Column185 | \n", "Column186 | \n", "Column187 | \n", "Column188 | \n", "Column189 | \n", "Column190 | \n", "Column191 | \n", "Column192 | \n", "Column193 | \n", "Column194 | \n", "Column195 | \n", "Column196 | \n", "Column197 | \n", "Column198 | \n", "Column199 | \n", "Column200 | \n", "Column201 | \n", "Column202 | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "Alameda County | \n", "0 | \n", "19169.0 | \n", "19413.0 | \n", "19093.0 | \n", "19398.0 | \n", "19250.0 | \n", "19290.0 | \n", "19332.0 | \n", "19182.0 | \n", "18680.0 | \n", "18878.0 | \n", "18309.0 | \n", "17939.0 | \n", "17708.0 | \n", "17488.0 | \n", "17402.0 | \n", "17344.0 | \n", "17341.0 | \n", "17358.0 | \n", "17325.0 | \n", "17234.0 | \n", "17203.0 | \n", "17218.0 | \n", "17340.0 | \n", "17338.0 | \n", "17365.0 | \n", "17538.0 | \n", "17668.0 | \n", "17854.0 | \n", "18057.0 | \n", "18289.0 | \n", "18517.0 | \n", "18617.0 | \n", "18799.0 | \n", "19002.0 | \n", "19112.0 | \n", "19084.0 | \n", "18957.0 | \n", "18848.0 | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
1 | \n", "Alameda County | \n", "1 | \n", "19387.0 | \n", "19157.0 | \n", "19400.0 | \n", "19092.0 | \n", "19395.0 | \n", "19229.0 | \n", "19287.0 | \n", "19331.0 | \n", "19192.0 | \n", "18680.0 | \n", "18849.0 | \n", "18285.0 | \n", "17899.0 | \n", "17682.0 | \n", "17465.0 | \n", "17386.0 | \n", "17331.0 | \n", "17325.0 | \n", "17343.0 | \n", "17305.0 | \n", "17223.0 | \n", "17177.0 | \n", "17200.0 | \n", "17330.0 | \n", "17328.0 | \n", "17366.0 | \n", "17534.0 | \n", "17652.0 | \n", "17840.0 | \n", "18042.0 | \n", "18288.0 | \n", "18517.0 | \n", "18610.0 | \n", "18791.0 | \n", "19001.0 | \n", "19111.0 | \n", "19089.0 | \n", "18956.0 | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
2 | \n", "Alameda County | \n", "2 | \n", "20156.0 | \n", "19098.0 | \n", "18955.0 | \n", "19247.0 | \n", "19000.0 | \n", "19098.0 | \n", "18663.0 | \n", "18658.0 | \n", "18823.0 | \n", "18727.0 | \n", "18384.0 | \n", "18594.0 | \n", "18297.0 | \n", "17922.0 | \n", "17643.0 | \n", "17334.0 | \n", "17129.0 | \n", "17083.0 | \n", "16916.0 | \n", "16765.0 | \n", "16799.0 | \n", "16726.0 | \n", "16680.0 | \n", "16642.0 | \n", "16746.0 | \n", "16763.0 | \n", "16763.0 | \n", "16890.0 | \n", "17076.0 | \n", "17302.0 | \n", "17402.0 | \n", "17697.0 | \n", "17951.0 | \n", "18064.0 | \n", "18228.0 | \n", "18436.0 | \n", "18458.0 | \n", "18469.0 | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
3 | \n", "Alameda County | \n", "3 | \n", "19614.0 | \n", "20756.0 | \n", "19791.0 | \n", "19702.0 | \n", "20129.0 | \n", "19653.0 | \n", "19770.0 | \n", "19199.0 | \n", "19221.0 | \n", "19363.0 | \n", "19202.0 | \n", "18901.0 | \n", "19021.0 | \n", "18845.0 | \n", "18476.0 | \n", "18215.0 | \n", "17888.0 | \n", "17687.0 | \n", "17689.0 | \n", "17485.0 | \n", "17297.0 | \n", "17304.0 | \n", "17295.0 | \n", "17207.0 | \n", "17140.0 | \n", "17251.0 | \n", "17321.0 | \n", "17369.0 | \n", "17404.0 | \n", "17629.0 | \n", "17909.0 | \n", "17873.0 | \n", "18253.0 | \n", "18474.0 | \n", "18584.0 | \n", "18790.0 | \n", "18998.0 | \n", "19001.0 | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
4 | \n", "Alameda County | \n", "4 | \n", "19589.0 | \n", "19669.0 | \n", "20873.0 | \n", "19961.0 | \n", "19844.0 | \n", "20323.0 | \n", "19911.0 | \n", "20086.0 | \n", "19315.0 | \n", "19308.0 | \n", "19465.0 | \n", "19295.0 | \n", "19015.0 | \n", "19062.0 | \n", "18974.0 | \n", "18621.0 | \n", "18354.0 | \n", "18105.0 | \n", "17927.0 | \n", "17924.0 | \n", "17794.0 | \n", "17573.0 | \n", "17512.0 | \n", "17673.0 | \n", "17622.0 | \n", "17543.0 | \n", "17535.0 | \n", "17585.0 | \n", "17720.0 | \n", "17732.0 | \n", "18015.0 | \n", "18273.0 | \n", "18219.0 | \n", "18638.0 | \n", "18822.0 | \n", "18937.0 | \n", "19148.0 | \n", "19392.0 | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
5 | \n", "Alameda County | \n", "5 | \n", "19225.0 | \n", "19634.0 | \n", "20018.0 | \n", "21054.0 | \n", "20145.0 | \n", "20036.0 | \n", "20519.0 | \n", "20065.0 | \n", "20250.0 | \n", "19546.0 | \n", "19492.0 | \n", "19637.0 | \n", "19333.0 | \n", "19051.0 | \n", "19136.0 | \n", "19168.0 | \n", "18944.0 | \n", "18576.0 | \n", "18413.0 | \n", "18444.0 | \n", "18327.0 | \n", "18249.0 | \n", "18031.0 | \n", "17902.0 | \n", "18083.0 | \n", "18014.0 | \n", "18039.0 | \n", "18045.0 | \n", "18034.0 | \n", "18120.0 | \n", "18128.0 | \n", "18527.0 | \n", "18710.0 | \n", "18636.0 | \n", "19121.0 | \n", "19264.0 | \n", "19466.0 | \n", "19638.0 | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
6 | \n", "Alameda County | \n", "6 | \n", "19002.0 | \n", "18691.0 | \n", "19309.0 | \n", "19654.0 | \n", "20682.0 | \n", "19707.0 | \n", "19617.0 | \n", "20287.0 | \n", "19834.0 | \n", "19706.0 | \n", "18970.0 | \n", "18849.0 | \n", "19027.0 | \n", "18759.0 | \n", "18441.0 | \n", "18563.0 | \n", "18745.0 | \n", "18541.0 | \n", "18149.0 | \n", "18134.0 | \n", "18307.0 | \n", "18129.0 | \n", "17983.0 | \n", "17711.0 | \n", "17456.0 | \n", "17729.0 | \n", "17624.0 | \n", "17579.0 | \n", "17616.0 | \n", "17628.0 | \n", "17575.0 | \n", "17683.0 | \n", "18096.0 | \n", "18264.0 | \n", "18239.0 | \n", "18661.0 | \n", "18799.0 | \n", "19035.0 | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
7 | \n", "Alameda County | \n", "7 | \n", "19002.0 | \n", "18945.0 | \n", "18869.0 | \n", "19514.0 | \n", "19794.0 | \n", "20793.0 | \n", "19814.0 | \n", "19698.0 | \n", "20437.0 | \n", "19967.0 | \n", "19889.0 | \n", "19155.0 | \n", "18985.0 | \n", "19202.0 | \n", "18945.0 | \n", "18639.0 | \n", "18697.0 | \n", "18889.0 | \n", "18738.0 | \n", "18245.0 | \n", "18353.0 | \n", "18612.0 | \n", "18304.0 | \n", "18252.0 | \n", "17963.0 | \n", "17694.0 | \n", "17913.0 | \n", "17786.0 | \n", "17693.0 | \n", "17762.0 | \n", "17733.0 | \n", "17704.0 | \n", "17825.0 | \n", "18228.0 | \n", "18346.0 | \n", "18389.0 | \n", "18820.0 | \n", "18938.0 | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
8 | \n", "Alameda County | \n", "8 | \n", "18578.0 | \n", "19031.0 | \n", "19001.0 | \n", "19011.0 | \n", "19630.0 | \n", "19886.0 | \n", "20885.0 | \n", "19991.0 | \n", "19839.0 | \n", "20537.0 | \n", "20087.0 | \n", "19961.0 | \n", "19270.0 | \n", "19078.0 | \n", "19291.0 | \n", "19034.0 | \n", "18692.0 | \n", "18858.0 | \n", "18974.0 | \n", "18911.0 | \n", "18427.0 | \n", "18573.0 | \n", "18808.0 | \n", "18525.0 | \n", "18463.0 | \n", "18143.0 | \n", "17798.0 | \n", "18124.0 | \n", "17901.0 | \n", "17836.0 | \n", "17895.0 | \n", "17850.0 | \n", "17843.0 | \n", "17903.0 | \n", "18294.0 | \n", "18469.0 | \n", "18448.0 | \n", "18869.0 | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
9 | \n", "Alameda County | \n", "9 | \n", "18738.0 | \n", "18532.0 | \n", "19156.0 | \n", "19162.0 | \n", "19176.0 | \n", "19715.0 | \n", "19968.0 | \n", "20869.0 | \n", "20030.0 | \n", "20021.0 | \n", "20775.0 | \n", "20274.0 | \n", "20194.0 | \n", "19398.0 | \n", "19276.0 | \n", "19407.0 | \n", "19096.0 | \n", "18696.0 | \n", "18900.0 | \n", "18914.0 | \n", "18866.0 | \n", "18428.0 | \n", "18655.0 | \n", "18898.0 | \n", "18620.0 | \n", "18553.0 | \n", "18228.0 | \n", "17842.0 | \n", "18156.0 | \n", "17995.0 | \n", "17888.0 | \n", "17872.0 | \n", "17803.0 | \n", "17868.0 | \n", "17925.0 | \n", "18290.0 | \n", "18445.0 | \n", "18431.0 | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
10 rows Ă— 255 columns
\n", "\n", " | County | \n", "Age | \n", "2010 | \n", "2011 | \n", "2012 | \n", "2013 | \n", "2014 | \n", "2015 | \n", "2016 | \n", "2017 | \n", "2018 | \n", "2019 | \n", "2020 | \n", "2021 | \n", "2022 | \n", "2023 | \n", "2024 | \n", "2025 | \n", "2026 | \n", "2027 | \n", "2028 | \n", "2029 | \n", "2030 | \n", "2031 | \n", "2032 | \n", "2033 | \n", "2034 | \n", "2035 | \n", "2036 | \n", "2037 | \n", "2038 | \n", "2039 | \n", "2040 | \n", "2041 | \n", "2042 | \n", "2043 | \n", "2044 | \n", "2045 | \n", "2046 | \n", "2047 | \n", "... | \n", "Column163 | \n", "Column164 | \n", "Column165 | \n", "Column166 | \n", "Column167 | \n", "Column168 | \n", "Column169 | \n", "Column170 | \n", "Column171 | \n", "Column172 | \n", "Column173 | \n", "Column174 | \n", "Column175 | \n", "Column176 | \n", "Column177 | \n", "Column178 | \n", "Column179 | \n", "Column180 | \n", "Column181 | \n", "Column182 | \n", "Column183 | \n", "Column184 | \n", "Column185 | \n", "Column186 | \n", "Column187 | \n", "Column188 | \n", "Column189 | \n", "Column190 | \n", "Column191 | \n", "Column192 | \n", "Column193 | \n", "Column194 | \n", "Column195 | \n", "Column196 | \n", "Column197 | \n", "Column198 | \n", "Column199 | \n", "Column200 | \n", "Column201 | \n", "Column202 | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "Alameda County | \n", "0 | \n", "19169.0 | \n", "19413.0 | \n", "19093.0 | \n", "19398.0 | \n", "19250.0 | \n", "19290.0 | \n", "19332.0 | \n", "19182.0 | \n", "18680.0 | \n", "18878.0 | \n", "18309.0 | \n", "17939.0 | \n", "17708.0 | \n", "17488.0 | \n", "17402.0 | \n", "17344.0 | \n", "17341.0 | \n", "17358.0 | \n", "17325.0 | \n", "17234.0 | \n", "17203.0 | \n", "17218.0 | \n", "17340.0 | \n", "17338.0 | \n", "17365.0 | \n", "17538.0 | \n", "17668.0 | \n", "17854.0 | \n", "18057.0 | \n", "18289.0 | \n", "18517.0 | \n", "18617.0 | \n", "18799.0 | \n", "19002.0 | \n", "19112.0 | \n", "19084.0 | \n", "18957.0 | \n", "18848.0 | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
1 | \n", "Alameda County | \n", "1 | \n", "19387.0 | \n", "19157.0 | \n", "19400.0 | \n", "19092.0 | \n", "19395.0 | \n", "19229.0 | \n", "19287.0 | \n", "19331.0 | \n", "19192.0 | \n", "18680.0 | \n", "18849.0 | \n", "18285.0 | \n", "17899.0 | \n", "17682.0 | \n", "17465.0 | \n", "17386.0 | \n", "17331.0 | \n", "17325.0 | \n", "17343.0 | \n", "17305.0 | \n", "17223.0 | \n", "17177.0 | \n", "17200.0 | \n", "17330.0 | \n", "17328.0 | \n", "17366.0 | \n", "17534.0 | \n", "17652.0 | \n", "17840.0 | \n", "18042.0 | \n", "18288.0 | \n", "18517.0 | \n", "18610.0 | \n", "18791.0 | \n", "19001.0 | \n", "19111.0 | \n", "19089.0 | \n", "18956.0 | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
2 | \n", "Alameda County | \n", "2 | \n", "20156.0 | \n", "19098.0 | \n", "18955.0 | \n", "19247.0 | \n", "19000.0 | \n", "19098.0 | \n", "18663.0 | \n", "18658.0 | \n", "18823.0 | \n", "18727.0 | \n", "18384.0 | \n", "18594.0 | \n", "18297.0 | \n", "17922.0 | \n", "17643.0 | \n", "17334.0 | \n", "17129.0 | \n", "17083.0 | \n", "16916.0 | \n", "16765.0 | \n", "16799.0 | \n", "16726.0 | \n", "16680.0 | \n", "16642.0 | \n", "16746.0 | \n", "16763.0 | \n", "16763.0 | \n", "16890.0 | \n", "17076.0 | \n", "17302.0 | \n", "17402.0 | \n", "17697.0 | \n", "17951.0 | \n", "18064.0 | \n", "18228.0 | \n", "18436.0 | \n", "18458.0 | \n", "18469.0 | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
3 | \n", "Alameda County | \n", "3 | \n", "19614.0 | \n", "20756.0 | \n", "19791.0 | \n", "19702.0 | \n", "20129.0 | \n", "19653.0 | \n", "19770.0 | \n", "19199.0 | \n", "19221.0 | \n", "19363.0 | \n", "19202.0 | \n", "18901.0 | \n", "19021.0 | \n", "18845.0 | \n", "18476.0 | \n", "18215.0 | \n", "17888.0 | \n", "17687.0 | \n", "17689.0 | \n", "17485.0 | \n", "17297.0 | \n", "17304.0 | \n", "17295.0 | \n", "17207.0 | \n", "17140.0 | \n", "17251.0 | \n", "17321.0 | \n", "17369.0 | \n", "17404.0 | \n", "17629.0 | \n", "17909.0 | \n", "17873.0 | \n", "18253.0 | \n", "18474.0 | \n", "18584.0 | \n", "18790.0 | \n", "18998.0 | \n", "19001.0 | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
4 | \n", "Alameda County | \n", "4 | \n", "19589.0 | \n", "19669.0 | \n", "20873.0 | \n", "19961.0 | \n", "19844.0 | \n", "20323.0 | \n", "19911.0 | \n", "20086.0 | \n", "19315.0 | \n", "19308.0 | \n", "19465.0 | \n", "19295.0 | \n", "19015.0 | \n", "19062.0 | \n", "18974.0 | \n", "18621.0 | \n", "18354.0 | \n", "18105.0 | \n", "17927.0 | \n", "17924.0 | \n", "17794.0 | \n", "17573.0 | \n", "17512.0 | \n", "17673.0 | \n", "17622.0 | \n", "17543.0 | \n", "17535.0 | \n", "17585.0 | \n", "17720.0 | \n", "17732.0 | \n", "18015.0 | \n", "18273.0 | \n", "18219.0 | \n", "18638.0 | \n", "18822.0 | \n", "18937.0 | \n", "19148.0 | \n", "19392.0 | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
197 | \n", "Alpine County | \n", "96 | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "2.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "2.0 | \n", "1.0 | \n", "0.0 | \n", "1.0 | \n", "1.0 | \n", "2.0 | \n", "1.0 | \n", "0.0 | \n", "1.0 | \n", "3.0 | \n", "1.0 | \n", "2.0 | \n", "4.0 | \n", "0.0 | \n", "2.0 | \n", "0.0 | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
198 | \n", "Alpine County | \n", "97 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "2.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "2.0 | \n", "1.0 | \n", "0.0 | \n", "1.0 | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "3.0 | \n", "1.0 | \n", "0.0 | \n", "4.0 | \n", "0.0 | \n", "2.0 | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
199 | \n", "Alpine County | \n", "98 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "2.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "1.0 | \n", "0.0 | \n", "1.0 | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "3.0 | \n", "1.0 | \n", "0.0 | \n", "4.0 | \n", "0.0 | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
200 | \n", "Alpine County | \n", "99 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "1.0 | \n", "0.0 | \n", "1.0 | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "3.0 | \n", "0.0 | \n", "0.0 | \n", "3.0 | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
201 | \n", "Alpine County | \n", "100 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "2.0 | \n", "2.0 | \n", "2.0 | \n", "1.0 | \n", "2.0 | \n", "4.0 | \n", "3.0 | \n", "2.0 | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
202 rows Ă— 255 columns
\n", "\n", " | elderly_population | \n", "num_beds | \n", "
---|---|---|
los angeles county | \n", "2152960.0 | \n", "2145 | \n", "
orange county | \n", "717395.0 | \n", "614 | \n", "
san diego county | \n", "688677.0 | \n", "605 | \n", "
riverside county | \n", "525411.0 | \n", "378 | \n", "
santa clara county | \n", "417912.0 | \n", "438 | \n", "
san bernardino county | \n", "392687.0 | \n", "486 | \n", "
alameda county | \n", "377472.0 | \n", "291 | \n", "
sacramento county | \n", "327733.0 | \n", "376 | \n", "
contra costa county | \n", "285941.0 | \n", "169 | \n", "
san francisco county | \n", "205190.0 | \n", "326 | \n", "
san mateo county | \n", "197665.0 | \n", "96 | \n", "
ventura county | \n", "197639.0 | \n", "123 | \n", "
fresno county | \n", "182237.0 | \n", "149 | \n", "
kern county | \n", "156139.0 | \n", "155 | \n", "
san joaquin county | \n", "148223.0 | \n", "90 | \n", "
sonoma county | \n", "141367.0 | \n", "72 | \n", "
placer county | \n", "107029.0 | \n", "58 | \n", "
stanislaus county | \n", "104865.0 | \n", "92 | \n", "
solano county | \n", "104407.0 | \n", "82 | \n", "
santa barbara county | \n", "96753.0 | \n", "79 | \n", "
monterey county | \n", "87896.0 | \n", "30 | \n", "
marin county | \n", "86143.0 | \n", "30 | \n", "
tulare county | \n", "82689.0 | \n", "65 | \n", "
san luis obispo county | \n", "76867.0 | \n", "48 | \n", "
santa cruz county | \n", "67628.0 | \n", "13 | \n", "
el dorado county | \n", "61438.0 | \n", "28 | \n", "
butte county | \n", "57513.0 | \n", "47 | \n", "
shasta county | \n", "48541.0 | \n", "70 | \n", "
merced county | \n", "46804.0 | \n", "24 | \n", "
yolo county | \n", "40207.0 | \n", "14 | \n", "
nevada county | \n", "36661.0 | \n", "8 | \n", "
imperial county | \n", "36547.0 | \n", "28 | \n", "
napa county | \n", "36326.0 | \n", "48 | \n", "
humboldt county | \n", "34673.0 | \n", "26 | \n", "
madera county | \n", "32477.0 | \n", "52 | \n", "
mendocino county | \n", "26010.0 | \n", "16 | \n", "
kings county | \n", "23677.0 | \n", "22 | \n", "
lake county | \n", "19845.0 | \n", "8 | \n", "
tuolumne county | \n", "19047.0 | \n", "6 | \n", "
calaveras county | \n", "17413.0 | \n", "8 | \n", "
tehama county | \n", "17078.0 | \n", "8 | \n", "
siskiyou county | \n", "15133.0 | \n", "8 | \n", "
yuba county | \n", "14552.0 | \n", "24 | \n", "
san benito county | \n", "13594.0 | \n", "4 | \n", "
amador county | \n", "13393.0 | \n", "6 | \n", "
del norte county | \n", "6855.0 | \n", "6 | \n", "
inyo county | \n", "6068.0 | \n", "4 | \n", "
colusa county | \n", "4619.0 | \n", "6 | \n", "
mono county | \n", "3591.0 | \n", "2 | \n", "
\n", " | elderly_population | \n", "num_beds | \n", "max_percent_elderly | \n", "
---|---|---|---|
los angeles county | \n", "2152960.0 | \n", "2145 | \n", "0.099630 | \n", "
orange county | \n", "717395.0 | \n", "614 | \n", "0.085587 | \n", "
san diego county | \n", "688677.0 | \n", "605 | \n", "0.087850 | \n", "
riverside county | \n", "525411.0 | \n", "378 | \n", "0.071944 | \n", "
santa clara county | \n", "417912.0 | \n", "438 | \n", "0.104807 | \n", "
san bernardino county | \n", "392687.0 | \n", "486 | \n", "0.123763 | \n", "
alameda county | \n", "377472.0 | \n", "291 | \n", "0.077092 | \n", "
sacramento county | \n", "327733.0 | \n", "376 | \n", "0.114728 | \n", "
contra costa county | \n", "285941.0 | \n", "169 | \n", "0.059103 | \n", "
san francisco county | \n", "205190.0 | \n", "326 | \n", "0.158877 | \n", "
san mateo county | \n", "197665.0 | \n", "96 | \n", "0.048567 | \n", "
ventura county | \n", "197639.0 | \n", "123 | \n", "0.062235 | \n", "
fresno county | \n", "182237.0 | \n", "149 | \n", "0.081762 | \n", "
kern county | \n", "156139.0 | \n", "155 | \n", "0.099271 | \n", "
san joaquin county | \n", "148223.0 | \n", "90 | \n", "0.060719 | \n", "
sonoma county | \n", "141367.0 | \n", "72 | \n", "0.050931 | \n", "
placer county | \n", "107029.0 | \n", "58 | \n", "0.054191 | \n", "
stanislaus county | \n", "104865.0 | \n", "92 | \n", "0.087732 | \n", "
solano county | \n", "104407.0 | \n", "82 | \n", "0.078539 | \n", "
santa barbara county | \n", "96753.0 | \n", "79 | \n", "0.081651 | \n", "
monterey county | \n", "87896.0 | \n", "30 | \n", "0.034131 | \n", "
marin county | \n", "86143.0 | \n", "30 | \n", "0.034826 | \n", "
tulare county | \n", "82689.0 | \n", "65 | \n", "0.078608 | \n", "
san luis obispo county | \n", "76867.0 | \n", "48 | \n", "0.062446 | \n", "
santa cruz county | \n", "67628.0 | \n", "13 | \n", "0.019223 | \n", "
el dorado county | \n", "61438.0 | \n", "28 | \n", "0.045574 | \n", "
butte county | \n", "57513.0 | \n", "47 | \n", "0.081721 | \n", "
shasta county | \n", "48541.0 | \n", "70 | \n", "0.144208 | \n", "
merced county | \n", "46804.0 | \n", "24 | \n", "0.051278 | \n", "
yolo county | \n", "40207.0 | \n", "14 | \n", "0.034820 | \n", "
nevada county | \n", "36661.0 | \n", "8 | \n", "0.021822 | \n", "
imperial county | \n", "36547.0 | \n", "28 | \n", "0.076614 | \n", "
napa county | \n", "36326.0 | \n", "48 | \n", "0.132137 | \n", "
humboldt county | \n", "34673.0 | \n", "26 | \n", "0.074986 | \n", "
madera county | \n", "32477.0 | \n", "52 | \n", "0.160113 | \n", "
mendocino county | \n", "26010.0 | \n", "16 | \n", "0.061515 | \n", "
kings county | \n", "23677.0 | \n", "22 | \n", "0.092917 | \n", "
lake county | \n", "19845.0 | \n", "8 | \n", "0.040312 | \n", "
tuolumne county | \n", "19047.0 | \n", "6 | \n", "0.031501 | \n", "
calaveras county | \n", "17413.0 | \n", "8 | \n", "0.045943 | \n", "
tehama county | \n", "17078.0 | \n", "8 | \n", "0.046844 | \n", "
siskiyou county | \n", "15133.0 | \n", "8 | \n", "0.052865 | \n", "
yuba county | \n", "14552.0 | \n", "24 | \n", "0.164926 | \n", "
san benito county | \n", "13594.0 | \n", "4 | \n", "0.029425 | \n", "
amador county | \n", "13393.0 | \n", "6 | \n", "0.044800 | \n", "
del norte county | \n", "6855.0 | \n", "6 | \n", "0.087527 | \n", "
inyo county | \n", "6068.0 | \n", "4 | \n", "0.065920 | \n", "
colusa county | \n", "4619.0 | \n", "6 | \n", "0.129898 | \n", "
mono county | \n", "3591.0 | \n", "2 | \n", "0.055695 | \n", "
\n", " | Province/States | \n", "Country/Region | \n", "WHO region | \n", "1/21/2020 | \n", "1/22/2020 | \n", "1/23/2020 | \n", "1/24/2020 | \n", "1/25/2020 | \n", "1/26/2020 | \n", "1/27/2020 | \n", "1/28/2020 | \n", "1/29/2020 | \n", "1/30/2020 | \n", "1/31/2020 | \n", "2/1/2020 | \n", "2/2/2020 | \n", "2/3/2020 | \n", "2/4/2020 | \n", "2/5/2020 | \n", "2/6/2020 | \n", "2/7/2020 | \n", "2/8/2020 | \n", "2/9/2020 | \n", "2/10/2020 | \n", "2/11/2020 | \n", "2/12/2020 | \n", "2/13/2020 | \n", "2/14/2020 | \n", "2/15/2020 | \n", "2/16/2020 | \n", "2/17/2020 | \n", "2/18/2020 | \n", "2/19/2020 | \n", "2/20/2020 | \n", "2/21/2020 | \n", "2/22/2020 | \n", "2/23/2020 | \n", "2/24/2020 | \n", "2/25/2020 | \n", "2/26/2020 | \n", "2/27/2020 | \n", "2/28/2020 | \n", "2/29/2020 | \n", "3/1/2020 | \n", "3/2/2020 | \n", "3/3/2020 | \n", "3/4/2020 | \n", "3/5/2020 | \n", "Unnamed: 48 | \n", "Unnamed: 49 | \n", "Unnamed: 50 | \n", "Unnamed: 51 | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "Confirmed | \n", "Globally | \n", "NaN | \n", "282.0 | \n", "314.0 | \n", "581.0 | \n", "846.0 | \n", "1320.0 | \n", "2014.0 | \n", "2798.0 | \n", "4593.0 | \n", "6065.0 | \n", "7818.0 | \n", "9826.0 | \n", "11953.0 | \n", "14557.0 | \n", "17391.0 | \n", "20630.0 | \n", "24554.0 | \n", "28276.0 | \n", "31481.0 | \n", "34886.0 | \n", "37558.0 | \n", "40554.0 | \n", "43103.0 | \n", "45171.0 | \n", "46997.0 | \n", "49053.0 | \n", "50580.0 | \n", "51857.0 | \n", "71429.0 | \n", "73332.0 | \n", "75204.0 | \n", "75748.0 | \n", "76769.0 | \n", "77794.0 | \n", "78811.0 | \n", "79331.0 | \n", "80239.0 | \n", "81109.0 | \n", "82294.0 | \n", "83652.0 | \n", "85403.0 | \n", "87137.0 | \n", "88948.0 | \n", "90870.0 | \n", "93091.0 | \n", "95324.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
1 | \n", "Confirmed | \n", "China | \n", "Western Pacific Region | \n", "278.0 | \n", "309.0 | \n", "571.0 | \n", "830.0 | \n", "1297.0 | \n", "1985.0 | \n", "2741.0 | \n", "4537.0 | \n", "5997.0 | \n", "7736.0 | \n", "9720.0 | \n", "11821.0 | \n", "14411.0 | \n", "17238.0 | \n", "20471.0 | \n", "24363.0 | \n", "28060.0 | \n", "31211.0 | \n", "34598.0 | \n", "37251.0 | \n", "40235.0 | \n", "42708.0 | \n", "44730.0 | \n", "46550.0 | \n", "48548.0 | \n", "50054.0 | \n", "51174.0 | \n", "70635.0 | \n", "72528.0 | \n", "74280.0 | \n", "74675.0 | \n", "75569.0 | \n", "76392.0 | \n", "77042.0 | \n", "77262.0 | \n", "77780.0 | \n", "78191.0 | \n", "78630.0 | \n", "78961.0 | \n", "79394.0 | \n", "79968.0 | \n", "80174.0 | \n", "80304.0 | \n", "80422.0 | \n", "80565.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
2 | \n", "Confirmed | \n", "Outside of China | \n", "NaN | \n", "4.0 | \n", "5.0 | \n", "10.0 | \n", "16.0 | \n", "23.0 | \n", "29.0 | \n", "57.0 | \n", "56.0 | \n", "68.0 | \n", "82.0 | \n", "106.0 | \n", "132.0 | \n", "146.0 | \n", "153.0 | \n", "159.0 | \n", "191.0 | \n", "216.0 | \n", "270.0 | \n", "288.0 | \n", "307.0 | \n", "319.0 | \n", "395.0 | \n", "441.0 | \n", "447.0 | \n", "505.0 | \n", "526.0 | \n", "683.0 | \n", "794.0 | \n", "804.0 | \n", "924.0 | \n", "1073.0 | \n", "1200.0 | \n", "1402.0 | \n", "1769.0 | \n", "2069.0 | \n", "2459.0 | \n", "2918.0 | \n", "3664.0 | \n", "4691.0 | \n", "6009.0 | \n", "7169.0 | \n", "8774.0 | \n", "10566.0 | \n", "12669.0 | \n", "14759.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
3 | \n", "Deaths | \n", "China | \n", "Western Pacific Region | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "80.0 | \n", "106.0 | \n", "132.0 | \n", "170.0 | \n", "213.0 | \n", "259.0 | \n", "304.0 | \n", "361.0 | \n", "425.0 | \n", "491.0 | \n", "564.0 | \n", "637.0 | \n", "723.0 | \n", "812.0 | \n", "909.0 | \n", "1017.0 | \n", "1114.0 | \n", "1260.0 | \n", "1381.0 | \n", "1524.0 | \n", "1666.0 | \n", "1772.0 | \n", "1870.0 | \n", "2006.0 | \n", "2121.0 | \n", "2239.0 | \n", "2348.0 | \n", "2445.0 | \n", "2595.0 | \n", "2666.0 | \n", "2718.0 | \n", "2747.0 | \n", "2791.0 | \n", "2838.0 | \n", "2873.0 | \n", "2915.0 | \n", "2946.0 | \n", "2984.0 | \n", "3015.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
4 | \n", "Hubei | \n", "China | \n", "Western Pacific Region | \n", "258.0 | \n", "270.0 | \n", "375.0 | \n", "375.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "7153.0 | \n", "9074.0 | \n", "11177.0 | \n", "13522.0 | \n", "16678.0 | \n", "19665.0 | \n", "22112.0 | \n", "24953.0 | \n", "27100.0 | \n", "29631.0 | \n", "31728.0 | \n", "33366.0 | \n", "34874.0 | \n", "51968.0 | \n", "54406.0 | \n", "56249.0 | \n", "58182.0 | \n", "59989.0 | \n", "61682.0 | \n", "62031.0 | \n", "62662.0 | \n", "63454.0 | \n", "64084.0 | \n", "64287.0 | \n", "64786.0 | \n", "65187.0 | \n", "65596.0 | \n", "65914.0 | \n", "66337.0 | \n", "66907.0 | \n", "67103.0 | \n", "67217.0 | \n", "67332.0 | \n", "67466.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
5 | \n", "Guangdong | \n", "China | \n", "Western Pacific Region | \n", "14.0 | \n", "17.0 | \n", "26.0 | \n", "32.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "520.0 | \n", "604.0 | \n", "683.0 | \n", "797.0 | \n", "870.0 | \n", "944.0 | \n", "1018.0 | \n", "1075.0 | \n", "1120.0 | \n", "1151.0 | \n", "1177.0 | \n", "1219.0 | \n", "1241.0 | \n", "1261.0 | \n", "1295.0 | \n", "1316.0 | \n", "1322.0 | \n", "1328.0 | \n", "1331.0 | \n", "1332.0 | \n", "1333.0 | \n", "1339.0 | \n", "1342.0 | \n", "1345.0 | \n", "1347.0 | \n", "1347.0 | \n", "1347.0 | \n", "1348.0 | \n", "1349.0 | \n", "1349.0 | \n", "1350.0 | \n", "1350.0 | \n", "1350.0 | \n", "1350.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
6 | \n", "Henan | \n", "China | \n", "Western Pacific Region | \n", "NaN | \n", "1.0 | \n", "1.0 | \n", "1.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "422.0 | \n", "493.0 | \n", "566.0 | \n", "675.0 | \n", "764.0 | \n", "851.0 | \n", "914.0 | \n", "981.0 | \n", "1033.0 | \n", "1073.0 | \n", "1105.0 | \n", "1135.0 | \n", "1169.0 | \n", "1184.0 | \n", "1212.0 | \n", "1231.0 | \n", "1246.0 | \n", "1257.0 | \n", "1262.0 | \n", "1265.0 | \n", "1267.0 | \n", "1270.0 | \n", "1271.0 | \n", "1271.0 | \n", "1271.0 | \n", "1271.0 | \n", "1272.0 | \n", "1272.0 | \n", "1272.0 | \n", "1272.0 | \n", "1272.0 | \n", "1272.0 | \n", "1272.0 | \n", "1272.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
7 | \n", "Zhejiang | \n", "China | \n", "Western Pacific Region | \n", "NaN | \n", "5.0 | \n", "5.0 | \n", "5.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "599.0 | \n", "661.0 | \n", "724.0 | \n", "829.0 | \n", "895.0 | \n", "954.0 | \n", "1006.0 | \n", "1048.0 | \n", "1075.0 | \n", "1104.0 | \n", "1117.0 | \n", "1131.0 | \n", "1145.0 | \n", "1155.0 | \n", "1162.0 | \n", "1167.0 | \n", "1171.0 | \n", "1172.0 | \n", "1173.0 | \n", "1175.0 | \n", "1203.0 | \n", "1205.0 | \n", "1205.0 | \n", "1205.0 | \n", "1205.0 | \n", "1205.0 | \n", "1205.0 | \n", "1205.0 | \n", "1205.0 | \n", "1205.0 | \n", "1206.0 | \n", "1213.0 | \n", "1213.0 | \n", "1215.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
8 | \n", "Hunan | \n", "China | \n", "Western Pacific Region | \n", "NaN | \n", "1.0 | \n", "1.0 | \n", "1.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "389.0 | \n", "463.0 | \n", "521.0 | \n", "593.0 | \n", "661.0 | \n", "711.0 | \n", "772.0 | \n", "803.0 | \n", "838.0 | \n", "879.0 | \n", "912.0 | \n", "946.0 | \n", "968.0 | \n", "988.0 | \n", "1001.0 | \n", "1004.0 | \n", "1006.0 | \n", "1007.0 | \n", "1008.0 | \n", "1010.0 | \n", "1011.0 | \n", "1013.0 | \n", "1016.0 | \n", "1016.0 | \n", "1016.0 | \n", "1016.0 | \n", "1017.0 | \n", "1017.0 | \n", "1018.0 | \n", "1018.0 | \n", "1018.0 | \n", "1018.0 | \n", "1018.0 | \n", "1018.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
9 | \n", "Anhui | \n", "China | \n", "Western Pacific Region | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "297.0 | \n", "340.0 | \n", "408.0 | \n", "480.0 | \n", "530.0 | \n", "591.0 | \n", "665.0 | \n", "733.0 | \n", "779.0 | \n", "830.0 | \n", "860.0 | \n", "889.0 | \n", "910.0 | \n", "934.0 | \n", "950.0 | \n", "962.0 | \n", "973.0 | \n", "982.0 | \n", "986.0 | \n", "987.0 | \n", "988.0 | \n", "989.0 | \n", "989.0 | \n", "989.0 | \n", "989.0 | \n", "989.0 | \n", "989.0 | \n", "990.0 | \n", "990.0 | \n", "990.0 | \n", "990.0 | \n", "990.0 | \n", "990.0 | \n", "990.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
\n", " | Province/States | \n", "Country/Region | \n", "WHO region | \n", "1/21/2020 | \n", "1/22/2020 | \n", "1/23/2020 | \n", "1/24/2020 | \n", "1/25/2020 | \n", "1/26/2020 | \n", "1/27/2020 | \n", "1/28/2020 | \n", "1/29/2020 | \n", "1/30/2020 | \n", "1/31/2020 | \n", "2/1/2020 | \n", "2/2/2020 | \n", "2/3/2020 | \n", "2/4/2020 | \n", "2/5/2020 | \n", "2/6/2020 | \n", "2/7/2020 | \n", "2/8/2020 | \n", "2/9/2020 | \n", "2/10/2020 | \n", "2/11/2020 | \n", "2/12/2020 | \n", "2/13/2020 | \n", "2/14/2020 | \n", "2/15/2020 | \n", "2/16/2020 | \n", "2/17/2020 | \n", "2/18/2020 | \n", "2/19/2020 | \n", "2/20/2020 | \n", "2/21/2020 | \n", "2/22/2020 | \n", "2/23/2020 | \n", "2/24/2020 | \n", "2/25/2020 | \n", "2/26/2020 | \n", "2/27/2020 | \n", "2/28/2020 | \n", "2/29/2020 | \n", "3/1/2020 | \n", "3/2/2020 | \n", "3/3/2020 | \n", "3/4/2020 | \n", "3/5/2020 | \n", "Unnamed: 48 | \n", "Unnamed: 49 | \n", "Unnamed: 50 | \n", "Unnamed: 51 | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "Confirmed | \n", "Globally | \n", "NaN | \n", "282.0 | \n", "314.0 | \n", "581.0 | \n", "846.0 | \n", "1320.0 | \n", "2014.0 | \n", "2798.0 | \n", "4593.0 | \n", "6065.0 | \n", "7818.0 | \n", "9826.0 | \n", "11953.0 | \n", "14557.0 | \n", "17391.0 | \n", "20630.0 | \n", "24554.0 | \n", "28276.0 | \n", "31481.0 | \n", "34886.0 | \n", "37558.0 | \n", "40554.0 | \n", "43103.0 | \n", "45171.0 | \n", "46997.0 | \n", "49053.0 | \n", "50580.0 | \n", "51857.0 | \n", "71429.0 | \n", "73332.0 | \n", "75204.0 | \n", "75748.0 | \n", "76769.0 | \n", "77794.0 | \n", "78811.0 | \n", "79331.0 | \n", "80239.0 | \n", "81109.0 | \n", "82294.0 | \n", "83652.0 | \n", "85403.0 | \n", "87137.0 | \n", "88948.0 | \n", "90870.0 | \n", "93091.0 | \n", "95324.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
1 | \n", "Confirmed | \n", "China | \n", "Western Pacific Region | \n", "278.0 | \n", "309.0 | \n", "571.0 | \n", "830.0 | \n", "1297.0 | \n", "1985.0 | \n", "2741.0 | \n", "4537.0 | \n", "5997.0 | \n", "7736.0 | \n", "9720.0 | \n", "11821.0 | \n", "14411.0 | \n", "17238.0 | \n", "20471.0 | \n", "24363.0 | \n", "28060.0 | \n", "31211.0 | \n", "34598.0 | \n", "37251.0 | \n", "40235.0 | \n", "42708.0 | \n", "44730.0 | \n", "46550.0 | \n", "48548.0 | \n", "50054.0 | \n", "51174.0 | \n", "70635.0 | \n", "72528.0 | \n", "74280.0 | \n", "74675.0 | \n", "75569.0 | \n", "76392.0 | \n", "77042.0 | \n", "77262.0 | \n", "77780.0 | \n", "78191.0 | \n", "78630.0 | \n", "78961.0 | \n", "79394.0 | \n", "79968.0 | \n", "80174.0 | \n", "80304.0 | \n", "80422.0 | \n", "80565.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
2 | \n", "Confirmed | \n", "Outside of China | \n", "NaN | \n", "4.0 | \n", "5.0 | \n", "10.0 | \n", "16.0 | \n", "23.0 | \n", "29.0 | \n", "57.0 | \n", "56.0 | \n", "68.0 | \n", "82.0 | \n", "106.0 | \n", "132.0 | \n", "146.0 | \n", "153.0 | \n", "159.0 | \n", "191.0 | \n", "216.0 | \n", "270.0 | \n", "288.0 | \n", "307.0 | \n", "319.0 | \n", "395.0 | \n", "441.0 | \n", "447.0 | \n", "505.0 | \n", "526.0 | \n", "683.0 | \n", "794.0 | \n", "804.0 | \n", "924.0 | \n", "1073.0 | \n", "1200.0 | \n", "1402.0 | \n", "1769.0 | \n", "2069.0 | \n", "2459.0 | \n", "2918.0 | \n", "3664.0 | \n", "4691.0 | \n", "6009.0 | \n", "7169.0 | \n", "8774.0 | \n", "10566.0 | \n", "12669.0 | \n", "14759.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
3 | \n", "Deaths | \n", "China | \n", "Western Pacific Region | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "80.0 | \n", "106.0 | \n", "132.0 | \n", "170.0 | \n", "213.0 | \n", "259.0 | \n", "304.0 | \n", "361.0 | \n", "425.0 | \n", "491.0 | \n", "564.0 | \n", "637.0 | \n", "723.0 | \n", "812.0 | \n", "909.0 | \n", "1017.0 | \n", "1114.0 | \n", "1260.0 | \n", "1381.0 | \n", "1524.0 | \n", "1666.0 | \n", "1772.0 | \n", "1870.0 | \n", "2006.0 | \n", "2121.0 | \n", "2239.0 | \n", "2348.0 | \n", "2445.0 | \n", "2595.0 | \n", "2666.0 | \n", "2718.0 | \n", "2747.0 | \n", "2791.0 | \n", "2838.0 | \n", "2873.0 | \n", "2915.0 | \n", "2946.0 | \n", "2984.0 | \n", "3015.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
4 | \n", "Hubei | \n", "China | \n", "Western Pacific Region | \n", "258.0 | \n", "270.0 | \n", "375.0 | \n", "375.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "7153.0 | \n", "9074.0 | \n", "11177.0 | \n", "13522.0 | \n", "16678.0 | \n", "19665.0 | \n", "22112.0 | \n", "24953.0 | \n", "27100.0 | \n", "29631.0 | \n", "31728.0 | \n", "33366.0 | \n", "34874.0 | \n", "51968.0 | \n", "54406.0 | \n", "56249.0 | \n", "58182.0 | \n", "59989.0 | \n", "61682.0 | \n", "62031.0 | \n", "62662.0 | \n", "63454.0 | \n", "64084.0 | \n", "64287.0 | \n", "64786.0 | \n", "65187.0 | \n", "65596.0 | \n", "65914.0 | \n", "66337.0 | \n", "66907.0 | \n", "67103.0 | \n", "67217.0 | \n", "67332.0 | \n", "67466.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
118 | \n", "NaN | \n", "Hungary | \n", "European Region | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "2.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
119 | \n", "NaN | \n", "Saint Barthélemy | \n", "Territories | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "1.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
120 | \n", "NaN | \n", "Saint Martin | \n", "Territories | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "2.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
121 | \n", "NaN | \n", "Gibraltar | \n", "Territories | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "1.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
122 | \n", "Case on an international conveyance | \n", "Other | \n", "Other | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "20.0 | \n", "61.0 | \n", "64.0 | \n", "64.0 | \n", "70.0 | \n", "135.0 | \n", "175.0 | \n", "174.0 | \n", "218.0 | \n", "218.0 | \n", "355.0 | \n", "454.0 | \n", "454.0 | \n", "542.0 | \n", "621.0 | \n", "634.0 | \n", "634.0 | \n", "634.0 | \n", "695.0 | \n", "691.0 | \n", "691.0 | \n", "705.0 | \n", "705.0 | \n", "705.0 | \n", "706.0 | \n", "706.0 | \n", "706.0 | \n", "706.0 | \n", "706.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
123 rows Ă— 52 columns
\n", "\n", " | 0 | \n", "2 | \n", "
---|---|---|
1/21/2020 | \n", "282 | \n", "4 | \n", "
1/22/2020 | \n", "314 | \n", "5 | \n", "
1/23/2020 | \n", "581 | \n", "10 | \n", "
1/24/2020 | \n", "846 | \n", "16 | \n", "
1/25/2020 | \n", "1320 | \n", "23 | \n", "
\n", " | global | \n", "USA | \n", "
---|---|---|
1/21/2020 | \n", "282 | \n", "4 | \n", "
1/22/2020 | \n", "314 | \n", "5 | \n", "
1/23/2020 | \n", "581 | \n", "10 | \n", "
1/24/2020 | \n", "846 | \n", "16 | \n", "
1/25/2020 | \n", "1320 | \n", "23 | \n", "
\n", " | global | \n", "USA | \n", "
---|---|---|
1/21/2020 | \n", "282 | \n", "4 | \n", "
1/22/2020 | \n", "314 | \n", "5 | \n", "
1/23/2020 | \n", "581 | \n", "10 | \n", "
1/24/2020 | \n", "846 | \n", "16 | \n", "
1/25/2020 | \n", "1320 | \n", "23 | \n", "
1/26/2020 | \n", "2014 | \n", "29 | \n", "
1/27/2020 | \n", "2798 | \n", "57 | \n", "
1/28/2020 | \n", "4593 | \n", "56 | \n", "
1/29/2020 | \n", "6065 | \n", "68 | \n", "
1/30/2020 | \n", "7818 | \n", "82 | \n", "
1/31/2020 | \n", "9826 | \n", "106 | \n", "
2/1/2020 | \n", "11953 | \n", "132 | \n", "
2/2/2020 | \n", "14557 | \n", "146 | \n", "
2/3/2020 | \n", "17391 | \n", "153 | \n", "
2/4/2020 | \n", "20630 | \n", "159 | \n", "
2/5/2020 | \n", "24554 | \n", "191 | \n", "
2/6/2020 | \n", "28276 | \n", "216 | \n", "
2/7/2020 | \n", "31481 | \n", "270 | \n", "
2/8/2020 | \n", "34886 | \n", "288 | \n", "
2/9/2020 | \n", "37558 | \n", "307 | \n", "
2/10/2020 | \n", "40554 | \n", "319 | \n", "
2/11/2020 | \n", "43103 | \n", "395 | \n", "
2/12/2020 | \n", "45171 | \n", "441 | \n", "
2/13/2020 | \n", "46997 | \n", "447 | \n", "
2/14/2020 | \n", "49053 | \n", "505 | \n", "
2/15/2020 | \n", "50580 | \n", "526 | \n", "
2/16/2020 | \n", "51857 | \n", "683 | \n", "
2/17/2020 | \n", "71429 | \n", "794 | \n", "
2/18/2020 | \n", "73332 | \n", "804 | \n", "
2/19/2020 | \n", "75204 | \n", "924 | \n", "
2/20/2020 | \n", "75748 | \n", "1073 | \n", "
2/21/2020 | \n", "76769 | \n", "1200 | \n", "
2/22/2020 | \n", "77794 | \n", "1402 | \n", "
2/23/2020 | \n", "78811 | \n", "1769 | \n", "
2/24/2020 | \n", "79331 | \n", "2069 | \n", "
2/25/2020 | \n", "80239 | \n", "2459 | \n", "
2/26/2020 | \n", "81109 | \n", "2918 | \n", "
2/27/2020 | \n", "82294 | \n", "3664 | \n", "
2/28/2020 | \n", "83652 | \n", "4691 | \n", "
2/29/2020 | \n", "85403 | \n", "6009 | \n", "
3/1/2020 | \n", "87137 | \n", "7169 | \n", "
3/2/2020 | \n", "88948 | \n", "8774 | \n", "
3/3/2020 | \n", "90870 | \n", "10566 | \n", "
3/4/2020 | \n", "93091 | \n", "12669 | \n", "
3/5/2020 | \n", "95324 | \n", "14759 | \n", "
\n", " | global | \n", "USA | \n", "
---|---|---|
2020-01-21 | \n", "282 | \n", "4 | \n", "
2020-01-22 | \n", "314 | \n", "5 | \n", "
2020-01-23 | \n", "581 | \n", "10 | \n", "
2020-01-24 | \n", "846 | \n", "16 | \n", "
2020-01-25 | \n", "1320 | \n", "23 | \n", "
\n", " | global | \n", "USA | \n", "year | \n", "month | \n", "weekday | \n", "
---|---|---|---|---|---|
2020-01-21 | \n", "282 | \n", "4 | \n", "2020 | \n", "1 | \n", "Tuesday | \n", "
2020-01-22 | \n", "314 | \n", "5 | \n", "2020 | \n", "1 | \n", "Wednesday | \n", "
2020-01-23 | \n", "581 | \n", "10 | \n", "2020 | \n", "1 | \n", "Thursday | \n", "
2020-01-24 | \n", "846 | \n", "16 | \n", "2020 | \n", "1 | \n", "Friday | \n", "
2020-01-25 | \n", "1320 | \n", "23 | \n", "2020 | \n", "1 | \n", "Saturday | \n", "
\n", " | global | \n", "USA | \n", "year | \n", "month | \n", "weekday | \n", "
---|---|---|---|---|---|
2020-01-21 | \n", "282 | \n", "4 | \n", "2020 | \n", "1 | \n", "Tuesday | \n", "
2020-01-22 | \n", "314 | \n", "5 | \n", "2020 | \n", "1 | \n", "Wednesday | \n", "
2020-01-23 | \n", "581 | \n", "10 | \n", "2020 | \n", "1 | \n", "Thursday | \n", "
2020-01-24 | \n", "846 | \n", "16 | \n", "2020 | \n", "1 | \n", "Friday | \n", "
2020-01-25 | \n", "1320 | \n", "23 | \n", "2020 | \n", "1 | \n", "Saturday | \n", "
2020-01-26 | \n", "2014 | \n", "29 | \n", "2020 | \n", "1 | \n", "Sunday | \n", "
2020-01-27 | \n", "2798 | \n", "57 | \n", "2020 | \n", "1 | \n", "Monday | \n", "
2020-01-28 | \n", "4593 | \n", "56 | \n", "2020 | \n", "1 | \n", "Tuesday | \n", "
2020-01-29 | \n", "6065 | \n", "68 | \n", "2020 | \n", "1 | \n", "Wednesday | \n", "
2020-01-30 | \n", "7818 | \n", "82 | \n", "2020 | \n", "1 | \n", "Thursday | \n", "
\n", " | global | \n", "USA | \n", "year | \n", "month | \n", "weekday | \n", "date | \n", "
---|---|---|---|---|---|---|
2020-01-21 | \n", "282 | \n", "4 | \n", "2020 | \n", "1 | \n", "Tuesday | \n", "2020-01-21 | \n", "
2020-01-22 | \n", "314 | \n", "5 | \n", "2020 | \n", "1 | \n", "Wednesday | \n", "2020-01-22 | \n", "
2020-01-23 | \n", "581 | \n", "10 | \n", "2020 | \n", "1 | \n", "Thursday | \n", "2020-01-23 | \n", "
2020-01-24 | \n", "846 | \n", "16 | \n", "2020 | \n", "1 | \n", "Friday | \n", "2020-01-24 | \n", "
2020-01-25 | \n", "1320 | \n", "23 | \n", "2020 | \n", "1 | \n", "Saturday | \n", "2020-01-25 | \n", "
2020-01-26 | \n", "2014 | \n", "29 | \n", "2020 | \n", "1 | \n", "Sunday | \n", "2020-01-26 | \n", "
2020-01-27 | \n", "2798 | \n", "57 | \n", "2020 | \n", "1 | \n", "Monday | \n", "2020-01-27 | \n", "
2020-01-28 | \n", "4593 | \n", "56 | \n", "2020 | \n", "1 | \n", "Tuesday | \n", "2020-01-28 | \n", "
2020-01-29 | \n", "6065 | \n", "68 | \n", "2020 | \n", "1 | \n", "Wednesday | \n", "2020-01-29 | \n", "
2020-01-30 | \n", "7818 | \n", "82 | \n", "2020 | \n", "1 | \n", "Thursday | \n", "2020-01-30 | \n", "
\n", " | y | \n", "USA | \n", "year | \n", "month | \n", "weekday | \n", "ds | \n", "
---|---|---|---|---|---|---|
2020-01-21 | \n", "282 | \n", "4 | \n", "2020 | \n", "1 | \n", "Tuesday | \n", "2020-01-21 | \n", "
2020-01-22 | \n", "314 | \n", "5 | \n", "2020 | \n", "1 | \n", "Wednesday | \n", "2020-01-22 | \n", "
2020-01-23 | \n", "581 | \n", "10 | \n", "2020 | \n", "1 | \n", "Thursday | \n", "2020-01-23 | \n", "
2020-01-24 | \n", "846 | \n", "16 | \n", "2020 | \n", "1 | \n", "Friday | \n", "2020-01-24 | \n", "
2020-01-25 | \n", "1320 | \n", "23 | \n", "2020 | \n", "1 | \n", "Saturday | \n", "2020-01-25 | \n", "